martes, 22 de septiembre de 2015

Las redes de neuronas artificiales (denominadas habitualmente como RNA o en inglés como: "ANN") son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el sistema nervioso de los animales. Se trata de un sistema de interconexión de neuronas que colaboran entre sí para producir un estímulo de salida. En inteligencia artificial es frecuente referirse a ellas como redes de neuronas o redes neuronales.
Los primeros modelos de redes neuronales datan de 1943 por los neurólogos Warren McCulloch y Walter Pitts. Años más tarde, en 1949, Donald Hebb desarrolló sus ideas sobre el aprendizaje neuronal, quedando reflejado en la "regla de Hebb". En 1958, Rosenblatt desarrolló el perceptrón simple, y en 1960, Widrow y Hoff desarrollaron el ADALINE, que fue la primera aplicación industrial real.

En los años siguientes, se redujo la investigación, debido a la falta de modelos de aprendizaje y el estudio de Minsky y Papert sobre las limitaciones del perceptrón. Sin embargo, en los años 80, volvieron a resurgir las RNA gracias al desarrollo de la red de Hopfield, y en especial, al algoritmo de aprendizaje de retropropagación (BackPropagation) ideado por Rumelhart y McClelland en 1986 que fue aplicado en el desarrollo de los perceptrones multicapa.

0 comentarios:

Publicar un comentario

Unordered List

Sample Text

Con la tecnología de Blogger.

Seguidores

Vistas de página en total

Si necesitas buscar, DALE!!!

¿Qué te parece mi blog?

Traductor

Popular Posts

Text Widget